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CRITICAL STRESS OF THIN-WALLED CYLINDERS IN AXTAL COMPRESSION

By 8. B. Batdorf, Murry Schildcrout, and Manuel Stein
SUMMARY

Emplricel design curves are presented for the critical
stress of thin-walled cylinders loaded in axlal compression.
Thess curves are plotted in terms of the nondimensional
parameters of small-deflection theory and are compared with
theoretical curves derived for the buckling of cylinders with
simply supported and clamped edges. An empiricsal eguation is
given for the buckling of cylinders having a length-redius
ratio gresater than sbout 0.75.

The test data obteined from various sources follow the
general trend of the theoretical curve for cylinders with
clamped edges, -agreelng closely with the theory in the case of
short cylinders, but falling considerably below the theoretical
regults for long cylinders. The discrepsncy in the oase of
long cylinders increases with increasing values of the ratio
of.radius to wall thickness. Plotting cnrves for different
valuss of this ratio reduces the scatter in the test data
and e certain degree of correlation with theory 1s achieved.
Adventage 1s taken of this correlation to obtain estimated
design curves for cylinders with simply supported edges, for
which 1ittle experimental information is available.

REVIEW OF PREVIOUS WORK ON PROBLEM

Solutions to the problem of the determination of the critical
gtress of thin-walled cylinders subjected to axial compression
have been presented by a large number of authors. Southwell,
PTimoshenkn, Fliigge, and numerous other authors have obtained
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theoretical solutions by the use of the small-deflection theory.
(See, for example, references 1 to L4.) The value given by the
small-deflection theory for the buckling stress of a thin-walled
cylinder of moderate length having simply supported edges is

: Bt - Et
dx =3 L 01608 e (l>
A/3(1 - u2) . i
vhere
oy er:tical compressive stress

b4 Young'!s modvlusg ' . -
t  wall thickmess of cylinder
r  raedius of cylinder o

u Poisson'e ratio (in the present paper p ig taken to be 0.316
vhenever a value is assigned to it) .

Experiments (references 5 to 10) have ghown that the actusl
critical stress is much lower than that prodicted by equation (1).
Except In the cage of short cylinders, the experiments usually
give values only 15 to 50 percent ¢f thabt predictod theoretlcally;
morecver, the observed buckle pattorn ls diffevent from that
predicted on the basis of theory. A number of abttempts have been
mede to explain these discrepencies theoretically. Fligge (refer-
snce 3) considered the deviation of the actusl edge supports. from
the support conditions assumed in the theoretical treatment. Donnell
(reference 5) and alsc Fligge considered the initial deviation from
the perfect cylindrical shape., Neither of the two attempted
explanations satisfactorily accounts for the discrepancy exlsting
between the theoretical .and experimental values of the buckling
gtresses of cylinders.

Von Keyman and Taien (roferense 11} introduced a large-~
deflection’ theory to account for the buckling behavior of long
cylinders. They showed thet & long cylinder can be in equilibrivm
in a buckled state at a strese that is much gmalleoxr than the critical
stress of small-deflection theory and alsé succcedod’ in asccounting
for the buckle pattern observed in the early stages of buckling.
Reference 11 smuggested that vhen a cylinder has an initial imperfec-
tion or 1s subjected to a shock, 1t might pass into one of thesec
buckled states without ever having reached the critical load given
by cquation (1). Based on the seme approach, a theory for the
buckling stresses of perfect cylinders was propoged by Telen
(reference 12), which gave :
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Oy =" 0.370 %ﬁ (Iéading by rigid screw-power testing machine) (2)

oy = 0.238 2% (loading by ideal hydraulic testing méchine or
r dead weight) (3)

The lerge-deflection theories faill in two respects to describe
adequately tne buckling behavior of actual cylinders. First, the
theories are formulatod only for long cylinders; eguations (2) and (3)
geriously underestimate the critical stress of very short cylinders.
Second, even for long cylinders, attempts to dstermine experi-
mentally the numerical coefficlent C in the buckling formula

=t (%)

have resulted 1ln appreciable experimental scatter. The experimental
scetter 1s dus at least in part to the initial imperfections of
construction always present in real cylinders. (See fig. 1l taken
from reference 13, fig. 18.)

In the absence of a complete and satisfactory theoretical
golution for the critical stress of cylinders, a number of authors
have proposed empirical formulas derived from test data (refer-
ences 6 to 8). One such formule, which takes into account the
length of the ¢ylinder, is dus to Ballerstedt and Wagner (reference 8):

.§;=3.3(§) +0.2 8 S5y

r

2 .
The first parameter in this equ&tumz(%) is appropriate for flat

sheet and the second paramster L ig included to take into sccount

the effect of curvature. More rgcently-Kanemitsu and NoJjima
(reference 9) compiled all avallable previous experimental results



L : NACA TN No. 1343

and conducted a number of tests of thelr own. The formula of
Wagner end Ballerstedt was modified in reference 9 to bring it into
better agreement with experiment as follows:

o 1.3 - 1.6
o A X
Zx =06 7 v o2) (6)

< 3000) )

equation (6) is in considerably better agreement with experiment
then equation (5) but, becanse of the change in the exponents of
the parameters, equation (6) dces not have any rabional basis and
must be regerded as purely empirical. A complete divorce of theory
and experiment, however, cannot be regarded as a satiafactory
rermanent settlement of the problem, and the present report attempts
to bring theory end experiment into reascnable accord.

Within its range of application

6)’.1< Toas; 500 %

e

CONTRIBUTION OF PRESENT PAPER

In the present paper the available test data for critical
stresses of cylinders are reexamined. and theoreticel results are
used as & gulde in failring the curves, in extending the range of
valldity of the existing empirical results, and in achieving a
more rational interpretation of the test data. Hor this pwrpose
the test date are plotted in terms of the parameters of cylinder
theory and are compared with theoretical results ‘derived in the
appendix on the basis of emall-deflection theory.

The cylinder-theory paremeters used are
) 2

kk - oxtL

D2

and

(]
1
=
el
l_l'
t
-
n
i
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where

o [ E3
D flexural stiffness of plate per uvnit length \éE(l ) u2)

length of cylinder

D I

curvature parameter

critical stress coefficient apnearing in the equation

W™

Jeg D . -

Let _ : ; C e -

= -

The experimental date are used as the principal guide in
determining the critical compressive stresses of long cylinders
(lerge values of Z) and the theoreticel results are used mainly
to supplement the test dste in determining the critical stress o
of very short cylinders (smell values of Z). The experimental .
scatter is reduced by presenting different curves for cylinders .
with different values of the ratio of radius to wall thickness
on the assuwmption that for long cylinders this ratio furnishes soms
indication of the initial imperfections of the cylinder. Although
these curves were determined partly on the basis of theoretical
conslderations, they are for convenience referred to herein as
empirical curves,

. RESULTS AND CONCLUSIONS

The critlcal compressive stress for-cylinders is given by

the equation
. 2 -
o = Ex;". o - = {7}
X L% . :

where the values of 'kk may be obtained from figure 2 for

cylinders with either clemped or simply supported edges. The

design curves for cylinders with clamped edges are established .
by the test results reported in references 5 to 9. (See fig. 3.)
Each curve was faired through a series of test points which were
plotied for cylinders with nesrly the sams ratio of radius to wall
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thickness r/t. The estimated (dashed) parts of the design curves
for simple support were obtained by fairing betwsen the known
experimental curves for long cylinders (large values of 2Z), which
according to theory should be the same whether the cylinders have
slmply supported or clamped edges, end the theoretical curves for
vory short cylinders (emall values of Z).

For long cylinders the dbuckling stress 18 considerably below
the theoretical buckling stresss the amount of the discrepancy
depending on the ratio of radius to wall thickness. For very short
cylinders the values of the critical strésses approach those for
flat plates (simply supported ends, ky = 1; clamped ends,
ke = h), for vwhich the agreement betwseen theoretical and experimental
resulte 1s known to be good. The general trend of each empirical
curve 1s similar to that of the theoretical curve, indicating the
existence of a certain degres of correlatlon between theory and
test data.

At large values of Z the curves for ky become stralght
lines given by the formule

Ty = 1.15CZ | (8)

vhere C depends 6n the retio of radius to wall thickmess of the
cylinders in the menner shown in Pigure 4. From equations (7)
end (8) the following expression for the critical stress is obtained

) 'Ux = CE% . = (9)
Equetions (8) and (9) may be used when the length of the cylinder
19 more than sbout 3/4 of the redius. The ompirical curves of
reference 10 indicate that the critical stress is substantislly
independent of length when the length is greater than about 3/ of

the radius. (This result may be checked by noting that for 2 > 0.5 %

the experimental curves of flgure 2 are substantially stralght lines
of unit slope.) - . : :

In figure 5, the empiricel formula of Kenemitsu and Nojima
(equation (6) of the present paper, and the best previously published
formula for the buckling of cylinders) is plotted in terms of the
parameters ky and %Z. The curves are cut off at those values of Z
corresponding to the lower limite of the range of dimensions within
vhich the formula was intended to apply. In general, for the range
covered, the curves are in.reasonable. agreement with the test data
end with the curves of the present paper for cylinders with clamped
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edges., The practical importance of the present approach lies in the e
fact that the use of-the theoretical parameters end the theoretical

golutions as a guide in fairing the curves permits the removel of

the. lower limlts on these .curves and also permits estimated curves

to be drawn for the buckling stresses for simply supported cylinders,

although experimental data are avellable only for cylinders with

clamped edges.

Laengley Memorisl Aeronsuticel Laboratory - ..° R T
National Advisory Committes for Aerona,utics '
Langley Field, Va., March 20, 1947 .
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APPENDIX

THEORY FOR CYLINDERS BUCKLING UNDER
AXTAL, COMPRESSION

Synmbols

poaitive integer ' -

radius of cylinder

wall thickness of cylinder

radial ct.;»mponen'l: of displacement, positive oubward

axlal coordinate of cylinder

circumferential coordinate of ‘cylind.er

coefficlent appearing in o, = CE E

flexural stiffness of plate per unit length <_.,_:@£.._>
2

Young's modulus : ]je (- %)

length of cylinder

operator on w deflned in appendix

2 frmmeres- R —
curvature parsmeter {-¥1 - p2 or (—L‘-) Y
. rt r/ t

coefficlent of deflection function
cri'bical-compre.ssive-stress coefficlent appearing in the

2.
formula o, = K™D - -
2%

. : n—2 ' o) 2 - l).h -
My = [ - 102487 « athlgi Eml)Q S - - 1)

Vo

deflectlion function defined in the appendix
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L
B A

A half wave length of buckles in circumferential direction
H Poisson's ratio

cr.x critical axial compresgsive stress

2 2
¥ .3
v 32 T o8
o+ L2 3% Lt

ak
dx+ 9x2oy2 oy

v-4  the inverse of V! defined by A0 S

Theoretical Solubtlon

The critical compressive stress at which buckling occurs in
a cylindrical shell may be obtained by solving the egquation of
equilibrium,

Equation of equilibrium,.- The equation of eguilibrium for
a slightly bucxled cylindrical shell under axlal compression 1s
(reference 1)

' L ab o '
Dv’-l— Et "lf a W B W = .
S+ T v o + 0.t 37 0 (A1)

vhere x 1s the coordinate in the axlal direction - and y is the
coordinete in the circumferentlal direction. The accompanying
figure shows the coordinate system uvsed in the analysis.
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Dividing through equation (AL) by D gives

b 0172 b 3w 22 Pv _ 4
MR I e (e

where the dimensionless parameters Z and k, &are defined by

Z=‘I-'r~i—\/l—u2-

X =SJLEI‘_2_ - - . o
L pe2 . '

The equation of equilibrium may be represented by
Qw =0 (43)
where Q i1s defined by

L _
Lo 1272 232
e=v Sy

Method of solution.- Equation (A2) may be solved by use of
the Galerkin method as outlined in reference 15, When this method
is applied, the deflection w 1is expressed in series form as
follows

J

T

The set of functions Vm &re chosen to satisfy the boundary
conditions but need not satlisfy the equation of equilibrium. The
coefflcients . &y are determined by the equatious

L2\ AL . e

/0 ‘4 VpQwixdy = 0 (m=1,2,3, . . . J) (45)

in the present paper the deflection functions were chosen +o
satlsfy the following conditions on w abt the ends of the cylinder:
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2
For simply supported edges W = g-‘-'-’ =0
x2
a =
For clamped edges W= 533% 0

glz supported edges.- An expansion for w that is sinusoidal
in the circumrerentiel direction and perfectly aeneral (subject to
the boundery conditions for simple support) in the axlal direction is

w=sin;‘,ﬂZamsinE%'x ' (A6)

where A 1is the half weve length of the buckles in the c¢lrcum-
Perential direction. Equation (A6) is equivalent to equation (Ak) if

Vy = stn J sin % (A7)

- Substitution of expressions (A6) and (A7) into equation (A5) and
Integretion over the limlte indicated glve

1072
T2 . gB)2

n2ky = (B2 + n2)? (A8)

where

._;3-_-;‘11..‘ (m=1, 2, 3,...)

The minimm value of ky for a given 7 is found by assuming
e value for m eand minimizing ky with respect to B. This pro-
cedure 1is followed for various velues of m until g minimm ky is
reached. Figure 2 presente the theoretical criltical etress coeffl-
clents for cylinders Wi'bh gimply supported edges subJlected to axisl
compression.

Clermped adges.- A procedure similar to that used for cylinders

with simply supported edges may be followed for cylinders with
clamped edges. The deflection function uged 1s the followlng series

am%os Qﬂ—-—i')—-— - cos (m + l)“x) - (A9)

w= Bin

?"é
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Each term of this series satisfies the conditions on w at the
edges. The fumctlon V,; 1s now defined as

Vy, = sin X-— cos (1—1-1—-]':'—. Llmx cos QE—LL-J;L@> (m=1, 2,3 ...) (AL)

4

After the msame operatlons &re carried out for clamped edges ag
those carried out for the csse of simply supported edges, the following
eduaticns result: .

Form = 1 |
By (M1 + Mz) - ;M =0
Form= 2 .
ap (Mo + M,) - 8Mg =0 S _. {a11)
Form=3, % 5, ... '
oo (1 + Yisz) - g ol - Smaalge =
vhere _ s
. . 2 )4-
2 -1
M = (m-1)2+;3’l lZ(m ) 2-(m-l)2kx

).;. Km -

{n=1,2,3 ...)

These -equations have s solution if the following infinite determinant
vanishes:
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n=l|2My ity O M, O 0 ¢ o 0. ...

m=2| O  Mpif) O M o o o o0 ..

m=3] M3 O Mg O M5 0 0 0 ...

mh| O M O MM, O M, O O ...

m=5] 0 O Mg 0 MgM, O 0 .

m=6] O 0 0 Mg 0 MgiMg 0 Mg .. (A12)
7| O 6o o -0 W O My O ..

m8| o o o o 0 My 0 Mgshyg . . .

If the rows and columms are rearvengad the infinlte debterminant cen
be factored into the product of two infinite subleterminanta. The
cri'_bica.l atresses mey then be chtalned from the following equation:

m=l|2My 4y M 0 0... 0 0 0 o ..
m=3| M3 Mol NLD - 0.. 0 0 0 o ...
w=5| 0O Mg M, M7 0 0 0 o ...
m=7{ O 0 -1»57 M-,+M9 0 0 o 0 ...

. =0 @3)
n=2| O 0 0 O... M #f, M O o ... |
m=b{ O 0 e O... -M M Mg 0 ...
m=6| O 0 0 0... 0 Mg Mgidg -Mg . ..
m=8| O 0 0 0.. O 0 Mg Mg, . . .

’

The infinite subdeterminant involving terme with odd subscripts
correspcnds ‘to a symetrical buckling pattern (a buckling pattern
pymmetricel about the piane verpendicular tn and biesching the axis



1 . NACA TN No. 1343

of the cylinder). The infinite subdeterminant involving terms with
even subscripte corresponds to an antisymmetricel buckling pattern,
For brevity these subdeterminants wlll be referred-to as the odd
determinant and the even determinant, respectively,

The first spproximation is

0dd determinemt: 2M; % Mz =0 (aLk)
Even determinant: Mp + M) =0 (415)

The second approximation is

0dd determinamb: 2M; (M3 + M5) + MMy = O .+ (AL6)
Even determinent: Mp(M), + Mg) + MyMg = 0 (A17)

These equations show that for e selected velue of the curvature
pearameter F +the critical buckling gtress of a cylinder depends
upon the circumPerentiasl wave length. Since a structure buckles at
the lowest stress at which instabllity can occur, ky is minimized
with respect to the wave length by substituting values of B into
the equations until the minimum -k, can he obtained from & plov
of ky against B. TFor a glven Z +the lower of the two values
obtained from equations (ALL) and (A15) is the first aepproximation
of the critical buckling stress and, similarly, the lower of the
two values of ky obtained from equations (Al6) end (A1l7) is the
second approximation of the critical buckling stress.

Figure 2 presents the theoretical critlcal stress coefficients
for cylinders with clamped edges in axial compression as obtained
from the second epproximation, together with the exact curve for
the case of simply supported edges. Although thls solution is an
upper-limit solution, the second approximstion for the critical
gtress coefficlent of a cylinder with clamped edges must Pe very
close to being exact for intermedlate and large vaives of Z
beceuse 1t is almost ldervicael with the exesct solution for a
cylinder with simply supported edges, and the critical stress of
a cylinder with clamped edges cannot be less than the critical
gtress for a cylinder with simply supported edges. For values of
Z eapproaching zero, the accuracy of the second approximation is
indicated by the fact that it coincides with the known exact
solution (ky = L)} for a long flat plate with clamped edges.
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Figure l.- Effect of initial defects upon the maximum
compressive loads of struts and cyllnders.
(From reference 13, fig. 18.)
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Figure 2.- Critical stress coefficlents for thin-walled
clrcular cylinders subjected to axlial compresslion.
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Figure 3.- Comparison of test results wlth desigh curves

recommended for cylinders with clamped edges.
(Data from references 5 toc 9.)
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